

# The critical issue of hepatocellular carcinoma restaging: which is the best tool available?

| Journal:                      | Hepatology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | HEP-17-2454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wiley - Manuscript type:      | Rapid Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date Submitted by the Author: | 13-Dec-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:     | Vitale, Alessandro; Padua University Hospital, Chirurgia Epatobiliare e<br>Trapianto Epatico<br>Farinati, Fabio; University of Padua, Department of Surgical and<br>Gastroenterological Sciences<br>Nora, Giulia<br>Burra, Patrizia<br>Pawlik, Timothy; Johns Hopkins Hospital, Surgery and Oncology<br>Bucci, Laura<br>Giannini, Edoardo; Gastroenterology Unit, Department of Internal Medicine<br>Faggiano, Chiara<br>Ciccarese, Francesca; Divisione di Chirurgia, Policlinico San Marco<br>Rapaccini, Gian Ludovico; Universita Cattolica del Sacro Cuore, Istituto di<br>Medicina Interna e GeriatriA<br>Di Marco, Mariella; Divisione di Medicina, Azienda Ospedaliera Bolognini<br>Caturelli, Eugenio; Unità di Gastroenterologia, Ospedale Belcolle<br>Zoli, Marco; Università di Bologna, Dipartimento di Medicina Interna,<br>Cardioangiologia, Epatologia<br>Borzio, Franco; Unità di Gastroenterologia, Dipartimento di Medicina,<br>Ospedale Fatebenefratelli<br>Sacco, Rodolfo; Pisa University Hospital, Gastroenterology<br>Cabibbo, Giuseppe; Sezione di Gastroenterologia, Dipartimento Biomedico<br>di Medicina Interna e Specialistica, University of Palermo, Italy<br>Virdone, Roberto; Ospedale V Cervello, Internal Medicine<br>Marra, Fabio; Universita di Firenze, Dipartimento di Medicina Interna;<br>Universita di Firenze, Center for Research, Transfer and High Education<br>DENOTHE<br>Felder, Martina; Gastroenterology Unit, Bolzano Hospital<br>Morisco, Filomena; University of Padova, Dpt. of Clinical and Experimental<br>Medicine<br>Gastoenterology and Hepatology<br>Svegliati Baroni, Gianluca; Università Politecnica delle Marche, Dept. of<br>Gastroenterology and Hepatology<br>Foschi, Francesco; Ospedale Gastroe-Universitaria of Parma, Unit of<br>Infectious Diseases and Hepatology<br>Masotto, Alberto; Ospedale Sacro Cuore - Don Calabria, Gastroenterology |

| 1        |           |                                                                                                   |
|----------|-----------|---------------------------------------------------------------------------------------------------|
| 2<br>3   |           | 1                                                                                                 |
| 4        |           | Unit                                                                                              |
| 5        |           | NARDONE, GERARDO; UNIVERSITY FEDERICO II, CLINICAL AND<br>EXPERIMENTAL MEDICINE, GASTROENTEROLOGY |
| 6        |           | Colecchia, Antonio                                                                                |
| 7        |           | Aliberti, Camillo                                                                                 |
| 8        |           | Bernardi, Mauro; University of Bologna, Medicina Interna, Cardioangiologia,                       |
| 9        |           | Epatologia - Semeiotica Medica<br>Trevisani, Franco                                               |
| 10       |           | Cillo, Umberto; University of Padova, Surgery and Oncology                                        |
| 11<br>12 | Karmandar |                                                                                                   |
| 12       | Keywords: |                                                                                                   |
| 14       |           |                                                                                                   |
| 15       |           |                                                                                                   |
| 16       |           | SCHOLARONE*<br>Manuscripts                                                                        |
| 17       |           | <b>SCHOLARONE</b> <sup>™</sup>                                                                    |
| 18       |           | Manuscripts                                                                                       |
| 19       |           |                                                                                                   |
| 20       |           |                                                                                                   |
| 21<br>22 |           |                                                                                                   |
| 23       |           |                                                                                                   |
| 24       |           |                                                                                                   |
| 25       |           |                                                                                                   |
| 26       |           |                                                                                                   |
| 27       |           |                                                                                                   |
| 28       |           |                                                                                                   |
| 29<br>30 |           |                                                                                                   |
| 30       |           |                                                                                                   |
| 32       |           |                                                                                                   |
| 33       |           |                                                                                                   |
| 34       |           |                                                                                                   |
| 35       |           |                                                                                                   |
| 36       |           |                                                                                                   |
| 37       |           |                                                                                                   |
| 38<br>39 |           |                                                                                                   |
| 40       |           |                                                                                                   |
| 41       |           |                                                                                                   |
| 42       |           |                                                                                                   |
| 43       |           |                                                                                                   |
| 44       |           |                                                                                                   |
| 45       |           |                                                                                                   |
| 46<br>47 |           |                                                                                                   |
| 47 48    |           |                                                                                                   |
| 49       |           |                                                                                                   |
| 50       |           |                                                                                                   |
| 51       |           |                                                                                                   |
| 52       |           |                                                                                                   |
| 53       |           |                                                                                                   |
| 54       |           |                                                                                                   |
| 55       |           |                                                                                                   |
| 56       |           |                                                                                                   |
| 57       |           |                                                                                                   |
| 58<br>59 |           |                                                                                                   |
| 59<br>60 |           | Hepatology                                                                                        |
|          |           |                                                                                                   |

#### TITLE PAGE

TITLE:

# The critical issue of hepatocellular carcinoma restaging: which is the best tool available? SHORT TITLE: RESTAGING HCC PATIENTS

#### AUTHORS:

Alessandro Vitale<sup>1</sup>, Fabio Farinati<sup>1</sup>, Giulia Noaro<sup>1</sup>, Patrizia Burra<sup>1</sup>, Timothy M. Pawlik<sup>2</sup>, Laura Bucci<sup>3</sup>, Edoardo G. Giannini<sup>4</sup>, Chiara Faggiano<sup>5</sup>, Francesca Ciccarese<sup>6</sup>, Gian Lodovico Rapaccini<sup>7</sup>, Maria Di Marco<sup>8</sup>, Eugenio Caturelli<sup>9</sup>, Marco Zoli<sup>5</sup>, Franco Borzio<sup>10</sup>, Rodolfo Sacco<sup>11</sup>, Giuseppe Cabibbo<sup>12</sup>, Roberto Virdone<sup>13</sup>, Fabio Marra<sup>14</sup>, Martina Felder<sup>15</sup>, Filomena Morisco<sup>16</sup>, Luisa Benvegnù<sup>17</sup>, Antonio Gasbarrini<sup>18</sup>, Gianluca Svegliati-Baroni<sup>19</sup>, Francesco Giuseppe Foschi<sup>20</sup>, Andrea Olivani<sup>21</sup>, Alberto Masotto<sup>22</sup>, Gerardo Nardone<sup>23</sup>, Antonio Colecchia<sup>24</sup>, Camillo Aliberti<sup>25</sup>, Mauro Bernardi<sup>3</sup>, Franco Trevisani<sup>3</sup>, and Umberto Cillo<sup>1</sup>.

On behalf of the Italian Liver Cancer (ITA.LI.CA) group.

<sup>1</sup>Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua; Italy; <sup>2</sup>Department of Surgery, Wexner Medical Center at The Ohio State University; Ohio, USA; 3 Department of Medical and Surgical Sciences, Division of Semeiotics, Alma Mater Studiorum – University of Bologna, Bologna; Italy; <sup>4</sup>Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Policlinico San Martino, Genoa, Italy; <sup>5</sup>Department of Medical and Surgical Sciences, Division of Internal Medicine, Alma Mater Studiorum – University of Bologna, Bologna; Italy; <sup>6</sup>Division of Surgery, San Marco Hospital, Zingonia; Italy; <sup>7</sup>Division of Internal Medicine and Gastroenterology, Complesso Integrato Columbus, Università Cattolica del Sacro Cuore, Rome: Italy; <sup>8</sup>Division of Medicine, Bolognini Hospital, Seriate: Italy; <sup>9</sup>Division of Gastroenterology, Belcolle Hospital, Viterbo; Italy; <sup>10</sup>Department of Medicine, Division of Radiology, Fatebenefratelli Hospital, Milan; Italy; <sup>11</sup>Division of Gastroenterology and Metabolic Diseases, University Hospital of Pisa, Pisa; Italy; <sup>12</sup>Biomedical Department of Internal and Specialistic Medicine, Division of Gastroenterology, University of Palermo, Palermo; Italy; <sup>13</sup>Division of Internal Medicine 2, Ospedali Riuniti Villa Sofia-Cervello, Palermo; Italy; <sup>14</sup> Internal Medicine and Hepatology, Department of Experimental and Clinical Medicine- University of Firenze, Firenze; <sup>15</sup>Bolzano Regional Hospital, Division of Gastroenterology, Bolzano; Italy; <sup>16</sup> Department of Clinical Medicine and Surgery, Unit of Gastroenterology and Hepatology, University of Naples, "Federico II", Naples; Italy; <sup>17</sup> Department of Molecular Medicine, - University of Padova, Padova <sup>18</sup>Division of Internal Medicine and Gastroenterology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Roma;<sup>19</sup>Division of

#### Hepatology

Gastroenterology, Polytechnic University of Marche, Ancona; Italy; <sup>20</sup> Department of Internal Medicine, Ospedale per gli Infermi di Faenza, Faenza; Italy; <sup>21</sup>Division of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma; Italy; Italy; <sup>22</sup>Gastroenterology Unit, Ospedale Sacro Cuore Don Calabria, Negrar; <sup>23</sup>Department of Clinical Medicine and Surgery, Hepato-Gastroenterology Unit, University of Naples "Federico II", Napoli; <sup>24</sup> Department of Surgical and Medical sciences, Gastroenterology Unit, Alma Mater Studiorum – Università of Bologna, Bologna; <sup>25</sup> Radiology, Padua University Hospital

GRANT SUPPORT; None

ABBREVIATIONS

- BRE .. A.LI.CA, Italian Live. CC, hepatocellular carcinoma BCLC, Barcelona Clinic Liver Cancer CLIP, Cancer of the Liver Italian Program '\*'LC, Hong Kong Liver Cancer -\*tive care

  - IAT, intra-arterial therapy
  - SOR, Sorafenib
  - OTHER, other treatments
- ECOG PS, Eastern Cooperative Oncology Group performance status
- CPS, Child Pugh Score
- ALBI, albumin-bilirubin
- CR, complete response
- PR, partial response

Hepatology

SD, stable disease

PD, progressive disease

AIC, Akaike Information Criterion

C, Concordance

CORRESPONDING AUTHOR: Alessandro Vitale, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua; Italy Via Giustiniani 2, 35128 Padova, Italy Phone number: +393358247099, Email: alessandro.vitale@unipd.it

DISCLOSURES: None

WRITING ASSISTANCE: none

AUTHOR CONTRIBUTIONS:

Study concept and design; AV, FF, UC

Acquisition of data; LB, EGG, CF, FC, GLR, MDM, EC, MZ, FB, RS, GG, RV, FMarra, MF, FMorisco,

LB, AG, GSB, FGF, AO, AM, GN, AC, MB, FT

Analysis and interpretation of data; AV, FF, TMP, FT, GN, PB, CA, UC

Drafting of the manuscript; AV, FF, TMP, GN, PB, CA, UC

Critical revision of the manuscript for important intellectual content; GN; PB, TMP, TIH, LB, EGG, CF, FC, GLR, MDM, EC, MZ, FB, RS, GG, RV, FMarra, MF, FMorisco, LB, AG, GSB, FGF, AO, AM, GN, AC, MB, FT

Statistical analysis; AV

Study supervision; GN, PB, CA, LB, EGG, CF, FC, GLR, MDM, EC, MZ, FB, RS, GG, RV, FMarra, MF,

FMorisco, LB, AG, GSB, FGF, AO, AM, GN, AC, MB, FT

## Hepatology

# ABSTRACT

Prognostic assessment in patients with hepatocellular carcinoma (HCC) remains controversial at the time of diagnosis and becomes even more complex at the time of restaging, when new variables have to be considered. The aim of the current study was to evaluate the prognostic utility of restaging patients before proceeding with a  $2^{nd}$  line treatment for HCC.

The ITA.LI.CA prospective database 2008-2015 (n=3,623) was used to identify 1,196 HCC patients who had a complete restaging at the time of deciding the  $2^{nd}$  line therapy.

The performance of the ITA.LI.CA prognostic score at restaging was compared with that of the BCLC, HKLC, and CLIP systems. A multivariable Cox survival analysis was performed to identify baseline, restaging or dynamic variables able to improve the predictive performance of prognostic systems. At restaging, 37.5% of patients had a more advanced tumour stage, 35.3% were stable, while 27.2 % had a down-staged tumor compared with baseline. At restaging, the ITA.LI.CA scoring system demonstrated the best prognostic performance (c-index 0.707) among all systems examined. On multivariable analysis, progressive disease after the first treatment (hazard ratio [HR] 2.07, p<0.001), MELD at restaging (HR 1.06, p<0.001), and nonsurgical 2<sup>nd</sup> line treatment (HR from 2.93 with ablation to 6.30 with best supportive care) increased the discriminatory ability of the ITA.LI.CA prognostic score (c-index = 0.769). In conclusion, although the ITA.LI.CA score demonstrated the best prognostic performance at restaging, other variables should be considered to improve the prognostic assessment of patients at the time of 2<sup>nd</sup> treatment for HCC.

Keywords. Hepatocellular carcinoma; restaging; prognostic system; 2° line treatments

# **INTRODUCTION**

Prognostic assessment in patients with hepatocellular carcinoma (HCC) is extremely complex, as it depends on several factors including tumor stage, liver functional reserve, patient general conditions, and treatment choice.<sup>1</sup> Although the Barcelona Clinic Liver Cancer (BCLC) classification has been endorsed by American and European guidelines for HCC management,<sup>2,3</sup> its prognostic performance is usually lower than that of other prognostic scores, such as the Cancer of the Liver Italian Program (CLIP).<sup>4</sup> Moreover, the BCLC classification is often not followed in the Eastern world, where other systems have been created, such as the Hong Kong Liver Cancer (HKLC) staging system.<sup>5</sup> Recently, our group proposed the Italian Liver Cancer (ITA.LI.CA) prognostic system, which had been developed in a large Italian cohort of HCC patients and validated both in an independent Italian data set as well as in a large population of patients from Taiwan.<sup>6</sup> Of note, the ITA.LI.CA score showed the best prognostic performance compared with other available HCC prognostic systems, and other investigators have independently confirmed its superiority.<sup>7</sup>

Prognostic staging can be even more complicated in HCC patients who have received a firstline treatment and are being restaged. In fact, prognostic assessment of already treated patients is more difficult than that of naïve patients for several reasons. First, radiological restaging is technically more demanding due to the need to evaluate the extension of only remnant viable tumor areas.<sup>8</sup> Second, dynamic variables such as the response to first-line treatment, changes of tumor and liver function from baseline, and the time elapsed from treatment could also have a prognostic role.<sup>9,10</sup>

To date, all available prognostic systems have been developed and validated only in treatment naïve HCC populations and the efficiency of these systems in restaging patients at the time of the  $2^{nd}$  therapeutic decision remain unsettled, In fact, to the best of our knowledge, no study has compared the performance of prognostic systems in this setting. The aim of the study was, therefore, to evaluate the prognostic utility of re-staging patients before proceeding with a  $2^{nd}$  line

#### Hepatology

treatment for HCC. In addition, we sought to define the prognostic system that performed the best in the restaging setting. Lastly, we examined whether the prognostic performance of available systems improves with the addition of other independent prognostic variables available only at the time of restaging.

#### **METHODS**

#### Study group

The ITA.LI.CA database includes prospectively collected data of 6,669 consecutive patients with HCC managed in 24 Italian institutions between January 1987 and March 2015. Beginning in 2008, the ITA.LI.CA database compilation changed, requiring the registration of all parameters not only at baseline (cancer diagnosis) but also at the time of each treatment. Among the 3,263 patients enrolled in the ITA.LI.CA database from January 2008, we selected 1559 (47.8%) who were evaluated and managed since HCC diagnosis by the same ITA.LI.CA centre. Because of the purpose of this study, 322 patients who received only best supportive care (BSC) since the time of HCC diagnosis were excluded. To avoid any bias in the analysis, 12 patients who underwent liver transplantation (LT) as first-line treatment for HCC were also excluded. The remaining 1,225 patients had 2<sup>nd</sup> line staging and treatment after a first non-transplant treatment. After exclusion of 29 cases who did not have complete follow-up data or were lost to follow-up, a total of 1,196 patients were finally included in the final analytic cohort.

In the final cohort, 201 patients underwent liver resection (LR), 481 ablation procedures (ABL), 495 intra-arterial therapy (IAT), 51 Sorafenib (SOR), and 31 other treatments (OTHER) as first-line therapy.

The institutional review boards of the participating institutions approved the study. According to Italian law, no patient approval was needed for this retrospective study. Patients gave written consent for every diagnostic and therapeutic procedure, as well as for the use of data for

medical purposes. Informed consent was obtained as usual for medical, surgical, and radiological treatments, but not specifically for patient data to be used in this retrospective study.

Clinical and treatment-related variables, such as age, sex, etiology of underlying liver disease, presence of ascites and hepatic encephalopathy, main serological parameters (total bilirubin, creatinine, prothrombin time and/or INR,  $\alpha$ -fetoprotein, albumin, sodium), tumor radiological characteristics (number and size of lesions, vascular invasion, extra-hepatic metastases), Eastern Cooperative Oncology Group performance status (ECOG PS) and main treatment strategy were recorded. ECOG PS was prospectively assessed by clinicians of the ITA.LI.CA group. For each patient, the following composite variables were also calculated and recorded: Child-Pugh score (CPS), albumin-bilirubin (ALBI) grade, BCLC stage, HKLC stage, CLIP score, ITA.LI.CA score,<sup>5,6,11-14</sup> Tumor number and size, major vascular invasion and patterns of metastatic diffusion were assessed by computer tomography or magnetic resonance imaging. Specifically, vascular invasion was classified as intra- and extra-hepatic, according to the HKLC staging system criteria.<sup>5</sup> Intrahepatic vascular invasion was defined as the neoplastic invasion of intrahepatic branches of the portal vein, left or right portal vein, or main hepatic veins invasion. Extra-hepatic vascular invasion included main portal trunk and inferior vena cava involvement. In considering the response to the first-line treatment, patients were classified into 4 subgroups according to mRECIST criteria:<sup>8</sup> complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD). Patients with complete response (CR) were further stratified into two subgroups: early tumor recurrence ( $\leq 2$  years after fist line therapy) and late recurrence ( $\geq 2$ years).

### Statistical analysis

Baseline characteristics were examined based on frequency distribution; continuous data were presented as median values (interquartile range) unless indicated otherwise. Univariate comparisons were assessed using Student's t test, Wilcoxon rank-sum test, or chi-squared test as

#### Hepatology

appropriate. Missing data relative to study covariates involved less than 10% of patients in a all circumstances. Thus, missing values were imputed using the maximum likelihood estimation method.<sup>15</sup> Overall survival was defined from the date of restaging of HCC to the date of death, last follow-up evaluation, or data censoring (31 December 2015). Kaplan-Meier survival curves were used to estimate median overall survival and 1-, 3-, 5- and 10-y overall survival in the main study group (n=1,196) and in relevant subgroups. The survival curves were also stratified according to ITA.LI.CA prognostic system quartiles, and main BCLC, HKLC, and CLIP stages. The log-rank test was used to compare differences in survival curves. To graphically describe the prognostic performance of the ITA.LI.CA score and to test its prognostic calibration at restaging, patients were divided into four subgroups corresponding to the original quartiles at the 25<sup>th</sup>, 50<sup>th</sup>, 75<sup>th</sup> percentiles of the risk score in the paper from Farinati et al.<sup>6</sup> Thus, guartile 1 coincided with ITA.LI.CA score  $\leq$ 1, quartile 2 with score 2-3, quartile 3 with score 4-5, and quartile 4 with score >5. To compare the prognostic performance of the ITA.LI.CA prognostic score with that of other systems the Akaike Information Criterion (AIC) was used, as well as the Concordance (C)-index and the test for trend chi-square.<sup>16,17</sup> The lower the AIC value, the higher the discriminatory ability of the staging system. The higher the C-index and the test for trend chi-square, the higher the discriminatory ability and monotonicity of gradients of the staging system. To assess if the ITA.LI.CA score performes better than other systems we used the likelihood ratio test.

Univariable and multivariable Cox survival analyses were performed to identify baseline, restaging or dynamic variables able to improve the performance of main prognostic staging systems (BCLC, HKLC, CLIP, and ITA.LI.CA). In all analyses, a two-tailed P-value <0.05 was considered statistically significant. All analyses were performed in JMP® 9.0.1 package (1989–2010 SAS Institute Inc.), STATA13.0 (Copyright 1985-2013 StataCorp LP), and R.app GUI 1.51 (S. Urbanek & H.-J. Bibiko, © R Foundation for Statistical Computing, 2012).

# RESULTS

# Characteristics of the study group

The characteristics of the population at the time of initial HCC presentation and at the time of restaging are reported in Table 1. The majority of patients (75.5%) were male, and the average age was 69 years. The main aetiological risk factors for HCC were hepatitis C (61%) followed by alcoholic consumption (34%).

The median time between the first HCC presentation and clinical-radiological restaging was 102 months. The comparison between baseline characteristics and those at the time of restaging showed a statistically significant worsening of both general conditions (e.g. ECOG PS) and liver function. In particular, a Child-Pugh class migration was noted from class A to B or C (p=0.001), with about 28% of patients being CHILD B-C at restaging versus 23% at baseline. The median MELD of 8 (8-11) remained stable, but its distributions at baseline and at restaging were different (p<0.001) due to more patients (29.5% vs. 25.3%) having MELD >10 at restaging (p=0.014). The distributions of ALBI grades also slightly worsened (p=0.06).

Regarding tumour burden, while the size of the largest lesion was lower (2.5 vs. 3 cm, p<0.001), there was an increase in multinodular cancers (28.4% vs. 18.5%, p<0.001) and vascular invasion (11.4% vs. 4.6%, p<0.001) at the time of restaging. Furthermore, a rise in median AFP level (74 vs. 20 ng/mL, p<0.001) and metastatic disease (7.6% vs. 2.0%, p<0.001) was noted at restaging.

Patients more frequently received radical therapies to treat the first HCC (i.e. LR 16'8 %, and ABL 35%) compared with the disease at restaging, which was treated with IAT, SOR or BSC in 73% of patients (p<0'001). The patient distributions for each HCC prognostic system are shown in Supplementary Table 1. Of note, there was an increase in the proportion of patients who had advanced stages of disease at restaging. For instance, the proportion of patients who had an ITA.LI.CA score of 5 doubled (from 6'2% to 11'6%), while the proportion of patients with an ITA.LI.CA score  $\geq 9$  increased from 0'8 to 4'9%. In contrast, the proportion of patients with score 1

#### Hepatology

at restaging decreased from 184% to 131%, and that of patients with a score 2 from 222% to 157%.

Given the general trend toward a progression of cancer staging from baseline to restaging, we sought to better understand how patients migrated using the ITA.LI.CA system.

Table 2 demonstrates patient migration according to the ITA.LI.CA tumour staging and functional score. As shown in the supplementary Tables 2-3, tumor staging included main tumor variables (size and number of nodules, macroscopic vascular invasion, and metastases), while functional score included main patient- and liver function- variables (i.e. ECOG PST and Child Pugh score). At restaging, 37.5% of patients had a worse tumour stage (26% with an up-grade of 1 or 2 stages), 35.3% maintained the same stage and 27.2% were down staged. Considering the functional stage, there was no migration for 49.1% of patients, while liver function worsened in 40% of cases.

# Prognostic performance of different systems

The median follow up time was 34.5 months (31.4 - 35.5). Overall survival at 1-, 3-, 5- and 10- years was 81%, 56%, 41% and 29%, respectively, with a median survival of 42 months (37.6-46.7) (Supplementary Figure 1). To examine which staging system had the best prognostic power, each system was applied to the cohort both at the time of the first HCC diagnosis and at restaging (Supplementary Figures 2-3, Figure 1). The ITA.LI.CA prognostic system had the lowest AIC value among patients (4908.583) and the highest C- index (0.707) at restaging, indicating the best discriminatory ability and monotonicity of gradients (Table 3). The discriminatory ability of ITA.LI.CA system is shown by the best separation of survival curves associated with different prognostic subgroups (Figure 1). There was good calibration of the ITA.LI.CA score at restaging, with the observed and predicted survival curves largely overlapping (Supplementary Figure 4).

Improving the prognostic performance of the ITA.LI.CA prognostic score at restaging

Univariable survival analyses were performed including all clinical variables collected both at the time of HCC diagnosis and at restaging (Supplementary Table 4). The dynamic trend of some relevant variables were also analysed (stated as  $\Delta$ ), showing that not only the final value (at restaging) but also any change in a number of variables during the follow-up period for some parameters had an impact on survival. To test whether these variables and their changes significantly associated with survival improved the prognostic performance of ITA.LI.CA score at restaging, they were included in the multivariate analysis. The final model is shown in Table 4. While no dynamic variable retained an independent prognostic significance, MELD at restaging (HR 106, p<0.001), PD after the first treatment (HR 2.07, p<0.001) and nonsurgical treatment after restaging (HR from 2.93 with ABL to 6.30 with BSC) maintained their prognostic independence from the ITA.LI.CA score at restaging. The inclusion of these variables improved the C-index of the ITA.LI.CA prognostic score system (0 707 vs. ITA.LI.CA + additional variables, 0 769). Perez

## DISCUSSION

Over the last 20 years, a static and simplistic vision of HCC clinical management has prevailed in international guidelines.<sup>2,3</sup> According to this view, prognostic assessment has been performed using systems/scores based on variables available at the time of diagnosis. In routine clinical practice, these time-independent algorithms are sequentially applied to the patients during the follow-up, considering that most HCC patients have a complex disease history characterized by multiple consecutive treatments, requiring on-going reassessment and restaging. With this in mind, we sought to analyse the prognostic relevance of restaging. Specifically, we explored: 1) whether, how much and how frequently HCC patients change their initial stage after the first-line treatment; 2) whether the performance of the most utilized staging systems changes at restaging after the firstline treatment. Indeed, we demonstrated that the performance of each prognostic system changed compared with the baseline (Table 3). This was largely due to the fact that the oncologic composition of the population modifies over the follow-up with only 35% maintaining a stable disease, while the remainder were down-staged by treatment (about one third) or had a disease progression (Table 2). To date, the concept of down-staging in HCC patients has been exclusively adopted in potential candidates for LT.<sup>18,19</sup> The current study demonstrated that the concept of down-staging can be applied to all HCC patients and is a factor that affects the performance of prognostic system.

Of note, at baseline the prognostic performance of the various systems had a discriminatory power worse than reported in previous studies.<sup>6</sup> The reason may be related to a selection bias. Indeed, according to the design of the study, patients undergoing LT or BSC as initial therapy were excluded, as well as those with early death after the first-line therapy were also excluded, lacking the restaging at the time of the second treatment.

This study also showed that the ITA.LI.CA score<sup>6</sup> had the best prognostic discriminatory power both at the time of initial HCC diagnosis and after primary HCC treatment at the time of

restaging. The difference in predictive ability between ITA.LI.CA and BCLC system (the more utilized in Western countries) is clear comparing Figure 1 with Supplementary Figure 2.

We also found that other variables when included in the ITA.LI.CA staging system could improve the accuracy of this staging system at the time of restaging. For example, deterioration of liver function (i.e. MELD score at restaging) was an independent prognostic factor of prognosis at restaging. This finding is consistent with a recent ITA.LI.CA study from Cabibbo et al.<sup>20</sup> that examined on radically treated HCV-HCC patients. Another relevant variable to be considered at restaging after first-line therapies included progressive disease.<sup>21,22</sup> In turn, these factors were probably surrogate markers of biologically more aggressive tumors. In addition, surgery as second-line therapy was another independent prognostic factor at restaging. Collectively, these data confirm the results of other experiences evaluating prognostic factors in recurrent HCC.<sup>23,24</sup>

In conclusion, patients restaged before receiving a second-line treatment for HCC were not accurately staged using traditional prognostic tools. Among them, the ITA.LI.CA score demonstrated the best discriminatory power in predicting survival both at the time of HCC diagnosis and at restaging. Additional variables, such as MELD score at restaging, response to first-line therapy, and non-surgical therapy as second-line therapy, improved prognostic ability when considered in conjunction with the ITA.LI.CA score.

These data may help better predict prognosis of both patients undergoing the first treatment of HCC and those in need of restaging thereafter. Moreover the importance of selecting patients carefully is getting stronger as new 2<sup>nd</sup> line therapies for HCC will be soon developed. Therefore using a more accurate prognostic score to predict the clinical response could allow customise the therapeutic options to the patient's clinical features.

#### Hepatology

# REFERENCES

Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma.
 Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the
 Liver. Journal of hepatology 2001; 35: 421-430.

2. Bruix J, Sherman M, Practice Guidelines Committee AASLD. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-1236.

European Association For The Study Of The L, European Organisation For R, Treatment Of
 C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Journal of
 hepatology 2012; 56: 908-943.

4. Liu PH, Hsu CY, Hsia CY, et al. Prognosis of hepatocellular carcinoma: Assessment of eleven staging systems. J Hepatol 2016; 64: 601-608.

 Yau T, Tang VY, Yao TJ, et al. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 2014; 146: 1691-1700.

6. Farinati F, Vitale A, Spolverato G, et al. Development and Validation of a New Prognostic System for Patients with Hepatocellular Carcinoma. PLoS Med. 2016; 13: e1002006.

7. Dionigi E, Borzio M, Rossini A, et al. External validation of the ITA.LI.CA prognostic system for patients with hepatocellular carcinoma: A multicenter cohort study. DLD 2017; 49S: e4.

8. Lencioni R, and Llovet JM. Modified RECIST (MRECIST) Assessment for Hepatocellular Carcinoma. Seminars in Liver Disease 2010; 30: 52–60.

9. Yamashita Y, Shirabe K, Tsuijita E, et al. Third or More Repeat Hepatectomy for Recurrent Hepatocellular Carcinoma. Surgery 2013; 154: 1038–45.

 Chan DL, Morris DL, and Chua TC. Clinical Efficacy and Predictors of Outcomes of Repeat Hepatectomy for Recurrent Hepatocellular Carcinoma – A Systematic Review. Surgical Oncology 2013; 22: e23–30.

Child CG, Turcotte JG. Surgery and portal hypertension. Major problems in clinical surgery
 1964; 1: 1-85.

12. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. The British journal of surgery 1973; 60: 646-649.

Johnson PJ, Berhane S, Kagebayashi C, et al. □Assessment of Liver Function in Patients
 With Hepatocellular Carcinoma: A New Evidence-Based Approach—The ALBI Grade. J Clin
 Oncol 2015; 20; 33: 550-558.

14. Bruix J, Reig M, Sherman M. Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma. Gastroenterology 2016; 150: 835-853.

15. Baraldi AN, Enders CK. An introduction to modern missing data analyses. Journal of school psychology 2010; 48: 5-37.

16. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128-138.

M S. Akaike's criteria. In: Armitage P, Colton T, eds Encyclopedia of Biostatistics.
 Chichester: Wiley; 1998. p. 123-124.

 Yao FY, Mehta N, Flemming J, et al. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. Hepatology. 2015; 61: 1968-77.

 Ravaioli M, Grazi GL, Piscaglia F, et al. Liver transplantation for hepatocellular carcinoma: results of down-staging in patients initially outside the Milan selection criteria. Am J Transplant.
 2008; 8: 2547-57.

20. Cabibbo G, Petta S, Barbara M, et al.; Italian Liver Cancer (ITA.LI.CA) group. Hepatic decompensation is the major driver of death in HCV-infected cirrhotic patients with successfully treated early hepatocellular carcinoma. J Hepatol. 2017; 67: 65-71.

21. Shim JH1, Lee HC, Kim SO, et al. Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology. 2012; 262: 708-18.

22. Shuster A, Huynh TJ, Rajan DK, et al. Response Evaluation Criteria in Solid Tumors (RECIST) criteria are superior to European Association for Study of the Liver (EASL) criteria at 1 month follow-up for predicting long-term survival in patients treated with transarterial chemoembolization before liver transplantation for hepatocellular cancer. J Vasc Interv Radiol. 2013; 24: 805-12.

23. Tabrizian P, Jibara G, Shrager B, et al. Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg. 2015; 261: 947-55.

Erridge S, Pucher PH, Markar SR, et al. Meta-analysis of determinants of survival following 24. treatment of recurrent hepatocellular carcinoma. Br J Surg. 2017 Jun 19. doi: 10.1002/bjs.10597.

TPC-ICZ

Hepatology

# ACKNOWLEDGEMENTS

# Other members of the ITA.LI.CA group

Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum - Università di Bologna: Maurizio Biselli, Laura Bucci, Paolo Caraceni, Alessandro Cucchetti, Marco Domenicali, Lucia Napoli, Francesca Garuti, Annagiulia Gramenzi, Alessandro Granito, Donatella Magalotti, Giulia Negrini, Fabio Piscaglia, Matteo Ravaioli, Carla Serra, Francesco Tovoli, Federico Ravaioli, Giovanni Marasco; Dipartimento di Scienze Chirurgiche e Gastroenterologiche, Università di Padova: Giulia Peserico, Filippo Pelizzaro, Paola Todesca, Caterina Pozzan; Dipartimento di Medicina Interna, Unità di Gastroenterologia, IRCCS-Azienda Ospedaliera Universitaria San Martino-IST, Università di Genova: Matteo Brunacci, Alessandro Moscatelli, Gaia Pellegatta, Vincenzo Savarino; Unità Operativa di Chirurgia, Policlinico S. Marco, Zingonia: Paolo Del Poggio, Stefano Olmi; Unità di Medicina Interna e Gastroenterologia, Complesso Integrato Columbus, Università Cattolica di Roma, Roma: Nicoletta de Matthaeis; Unità Operativa di Medicina, Azienda Ospedaliera Bolognini, Seriate, Italia: Claudia Balsamo, Elena Vavassori; Unità Operativa di Gastroenterologia, Ospedale Belcolle, Viterbo: Paola Roselli, Valentina Lauria, Giorgio Pelecca; Unità Operativa di Medicina Protetta, Ospedale Belcolle, Viterbo: Serena Dell'Isola, Anna Maria Ialungo, Elena Rastrelli; Dipartimento Biomedico di Medicina Interna e Specialistica, Unità di Gastroenterologia, Università di Palermo: Calogero Cammà, Marcello Maida, Andrea Costantino; Dipartimento Biomedico di Medicina Interna e Specialistica, Unità di Medicina Interna 2, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo: Andrea Affronti - Emanuele Orlando - Maria Rosa Barcellona.; Ospedale Regionale di Bolzano, Unità di Gastroenterologia, Bolzano: Andrea Mega; Unità di Medicina Interna e Gastroenterologia, Policlinico Gemelli, Università Cattolica di Roma, Roma: Emanuele Rinninella; Unità Operativa Gastroenterologia e Malattie del Ricambio, Azienda Ospedaliero-Universitaria Pisana, Pisa: Valeria Mismas; Dipartimento di Medicina Interna; Ospedale per gli Infermi di Faenza, Faenza: Anna Chiara Dall'Aglio, Vittoria Bevilacqua, Andrea Casadei Gardini, Giorgio Ercolani, Erica Fiorini, Arianna Lanzi, Federica Mirici Cappa; Unità di Malattie Infettive ed Epatologia, Azienda Ospedaliero-Universitaria di Parma: Elisabetta Biasini, Gabriele Misaale; Department of Clinical Medicine and Surgery, Unit of Gastroenterology and Hepatology, University of Naples, "Federico II", Naples, Napoli: Maria Guarino, Anna Vitiello; Clinica di Gastroenterologia, Università Politecnica delle Marche, Ancona: Alessio Ortolani ed Alba Kostandini; Unità di Gastroenterologia, Ospedale Sacro Cuore Don Calabria, Negrar: Maria Chiaramonte, Fabiana Marchetti, Matteo Valerio; Dipartimento di Medicina Diagnostica e Prevenzione, Azienda ospedaliero-universitaria di Bologna, Unità Operativa di Radiologia: Alberta Cappelli, Rita Golfieri, Cristina Mosconi, Matteo Renzulli; Dipartimento di Medicina Clinica e Chirurgia, Unità di Epato-Gastroenterologia, Università di Napoli "Federico II", Napoli: Piero Coccoli, Marco Sanduzzi Zamparelli; Medicina Interna ed Epatologia, Dipartimento di Medicina Sperimentale e *Clinica – Università di Firenze, Firenze* : Andrea Lorenzo Inghilesi e Sami Aburas.

1 2

3 4

5 6

7

# TABLES

Table 1. Patient characteristics at baseline and at restaging.

|                                                  |                    | At the time of 1 <sup>st</sup> HCC presentation | At restaging   | P value |
|--------------------------------------------------|--------------------|-------------------------------------------------|----------------|---------|
| Variables                                        |                    | Number (%)                                      | Number (%)     |         |
|                                                  |                    | Median(IQR)                                     | Median(IQR)    |         |
| Gender                                           | Female             | 293 (24.50)                                     |                |         |
|                                                  | Male               | 903 (75.5)                                      |                |         |
| Age (years)                                      | Median             | 69 (62-75)                                      |                |         |
| Aetiology                                        |                    |                                                 |                |         |
| 80                                               | Alcohol            | 407 (34)                                        |                |         |
|                                                  | HBsAg              | 161 (13.5)                                      |                |         |
|                                                  | anti-HCV           | 727 (61)                                        |                |         |
| Time from the 1 <sup>st</sup> to 2 <sup>nd</sup> | Median             | 10.2 (5-21)                                     |                |         |
| clinical exam (months)                           |                    |                                                 |                |         |
| ECOG PS                                          | 0                  | 987 (82.5)                                      | 729 (61.0)     | < 0.00  |
|                                                  | 1                  | 172 (14.4)                                      | 353 (29.5)     |         |
|                                                  | 2                  | 31 (2.6)                                        | 83 (6.9)       |         |
|                                                  | > 2                | 6 (0.5)                                         | 31 (2.6)       |         |
| MELD                                             | Median             | 9 (8-11)                                        | 9 (8-11)       | < 0.00  |
|                                                  | > 10               | 303 (25.3)                                      | 352 (29.4)     | 0.01    |
| Child Pugh class                                 | А                  | 922 (77)                                        | 865 (72.3)     | < 0.00  |
|                                                  | В                  | 267 (22.5)                                      | 306 (25.6)     |         |
|                                                  | С                  | 7(0.5)                                          | 25 (2.1)       |         |
| ALBI grades                                      | 1                  | 268 (22.4)                                      | 224 (18.7)     | 0.00    |
|                                                  | 2                  | 880 (73.6)                                      | 896 (74.9)     |         |
|                                                  | 3                  | 48 (4)                                          | 76 (6.4)       |         |
| Diameter of the largest<br>lesion (cm)           | Median             | 3 (2-4.1)                                       | 2.5 (1.8-3.79) | < 0.00  |
| Nodular pattern                                  | Single lesion      | 682 (57)                                        | 578 (48.3)     | < 0.00  |
|                                                  | Up to 3 lesions    | 293 (24.5)                                      | 279 (23.3)     |         |
|                                                  | > 3 lesions        | 221 (18.5)                                      | 339 (28.4)     |         |
| Vascular invasion (VI)                           | Intrahepatic       | 32 (2.6)                                        | 72 (6)         | < 0.00  |
|                                                  | Extrahepatic       | 25 (2.0)                                        | 65 (5.4)       |         |
| AFP (ng/ml)                                      | Median             | 20 (6-442)                                      | 74 (8- 606)    | < 0.00  |
| Metastatic disease                               | yes                | 24 (2.0)                                        | 91 (7.6)       | < 0.00  |
| Treatment administration                         | LT                 | -                                               | 41 (3.4)       | < 0.00  |
|                                                  | LR                 | 201 (16.8)                                      | 37 (3.1)       |         |
|                                                  | ABL                | 418 (35)                                        | 164 (13.7)     |         |
|                                                  | IAT                | 495 (41.4)                                      | 446 (37.3)     |         |
|                                                  | SOR                | 51 (4.3)                                        | 253 (21.2)     |         |
|                                                  | Other              | 31 (2.5)                                        | 79 (6.6)       |         |
|                                                  | BSC                | -                                               | 176 (14.7)     |         |
| Response to the 1 <sup>st</sup> treatment        | Late<br>recurrence | 239 (20)                                        |                |         |
|                                                  | Early              | 382 (32)                                        |                |         |
|                                                  | recurrence         |                                                 |                |         |
|                                                  | PR                 | 358 (30)                                        |                |         |
|                                                  | SD                 | 84 (7)                                          |                |         |
|                                                  | PD                 | 133 (11)                                        |                |         |

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group Performance Status; MELD, Model for End Stage Liver disease; ALBI= albumin-bilirubin; AFP, alpha-fetoprotein; LT, liver transplantation; LR, liver resection; IAT, Intra Arterial Treatment; SOR, Sorafenib; BSC, Best Supportive Care; PR, Partial Response; SD, Stable Disease; PD, Progressive Disease

| ITA.LI.CA tumour staging<br>migration | Number of points<br>migrated | Number (%)<br>Median (IQR)    |
|---------------------------------------|------------------------------|-------------------------------|
| Down-staging                          | -5                           | 3 (0.2)                       |
|                                       | -4                           | 8 (0.7)                       |
|                                       | -3                           | 26 (2.2)                      |
|                                       | -2                           | 74 (6.2)                      |
|                                       | -1                           | 214 (17.9)                    |
|                                       | total                        | 325(27.2)                     |
| Stable disease                        | 0                            | 422 (35.3)                    |
| Up-staging                            | 1                            | 191 (16                       |
|                                       | 2                            | 120 (10                       |
|                                       | 3                            | 82 (6.8                       |
|                                       | 4                            | 36 (3                         |
|                                       | 5                            | 20 (1.7                       |
|                                       | total                        | 449 (37.5                     |
| migration<br>Down-staging             | -3<br>-2<br>-1               | 2 (0.2<br>10 (0.8<br>118 (9.9 |
|                                       | total                        | 130(10.9                      |
| Stable disease                        | 0                            | 588 (49.1                     |
| Up-staging                            | 1                            | 361 (30.2                     |
|                                       | 2                            | 92 (7.7                       |
|                                       | 3                            | 14 (1.2                       |
|                                       | 4                            | 10 (0.8                       |
|                                       | 5                            | 1 (0.1                        |
| Abbreviations: ITA.LI.CA, Italian     | total                        | 478 (40                       |
| Abbreviations. ITA.El.CA, Italian     |                              |                               |

# Table 2. Stage Migration within ITA.LI.CA tumour staging and functional score

| Prognostic System      | AIC      | C-index | χ² test | lr test, p value |
|------------------------|----------|---------|---------|------------------|
| ITA.LI.CA at restaging | 4908.583 | 0.7071  | 213.08  | -                |
| HKLC at restaging      | 4922.160 | 0.6900  | 267.25  | 23.80, <0.001    |
| CLIP at restaging      | 4960.322 | 0.6788  | 168.48  | 68.05, <0.001    |
| BCLC at restaging      | 4976.321 | 0.6659  | 113.72  | 86.07, <0.001    |
| HKLC baseline          | 5054.732 | 0.6213  | 116.94  | 156.37, <0.001   |
| ITA.LI.CA baseline     | 5071.975 | 0.6092  | 89.27   | 171.58, <0.001   |
| BCLC baseline          | 5079.535 | 0.6049  | 52.48   | 189.35, <0.001   |
| CLIP baseline          | 5076.824 | 0.5839  | 49.60   | 184.55, <0.001   |

Table 3. Prognostic ability of different prognostic systems at baseline and at restaging.

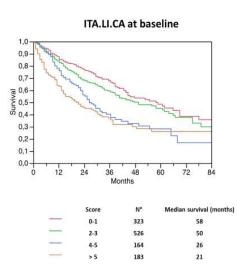
In each column have been reported the Akaike Information Criterion (AIC) as first value, the C-index as second value, and the test for trend chi-square as third value. The lower the AIC value, the higher the discriminatory ability of the prognostic system. The higher the c-index and the test for trend chi-square, the higher the discriminatory ability and monotonicity of gradients of the prognostic system.

In addition, in each column the ITA.LI.CA score was compared with other systems by using the likelihood ratio test.

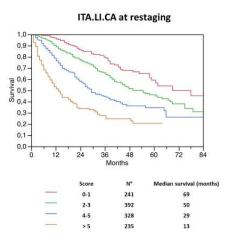
Abbreviations: AIC, Akaike Information Criterion; C, concordance; χ<sup>2</sup>, chi square; Ir, likelihood ratio; ITA.LI.CA, Italian Liver Cancer; HKLC, Hong Kong Liver Cancer; CLIP, Cancer Liver Italian Program; BCLC, Barcelona Clinic Liver Cancer.

Hepatology

**Table 4.** Variables improving the prognostic performance of the ITA.LI.CA score at restaging: multivariable survival analysis.


| Variables                 |                  | HR   | 95% CI       | $\ln \chi^2$ | p Value |
|---------------------------|------------------|------|--------------|--------------|---------|
| MELD                      | Restaging        | 1.06 | 1.03 - 1.08  | 18.46        | < 0.001 |
| Response to first         | Late recurrence  |      |              | 40.48        |         |
| treatment                 |                  |      |              |              |         |
|                           | PR               | 0.94 | 0.68 - 1.28  |              | 0.682   |
|                           | Early recurrence | 1.18 | 0.86 - 1.60  |              | 0.296   |
|                           | SD               | 1.12 | 0.71 - 1.76  |              | 0.620   |
|                           | PD               | 2.07 | 1.43 - 3.01  |              | <0.001  |
| Treatment after restaging | LT               |      |              | 54.03        |         |
|                           | LR               | 2.10 | 0.85 - 5.45  |              | 0.110   |
|                           | ABL              | 2.93 | 1.47 - 6.68  |              | 0.001   |
|                           | IAT              | 3.66 | 1.90 - 8.20  |              | <0.001  |
|                           | SOR              | 5.57 | 2.87 - 12.52 |              | <0.001  |
|                           | Other            | 5.70 | 2.78 - 13.29 |              | < 0.001 |
|                           | BSC              | 6.30 | 3.17 - 14.36 |              | <0.001  |
| ITA.LI.CA score           | Restaging        | 1.18 | 1.13 - 1.23  | 57.52        | <0.001  |

Abbreviations: HR, hazard ratio; CI, confidence interval; Ir  $\chi^2$ , likelihood ratio chi square; MELD= Model for End Stage Liver disease, ALBI= albumin-bilirubin, LT, liver transplantation; LR, liver resection; IAT, Intra Arterial Treatment; SOR, Sorafenib; BSC, Best Supportive Care; PR, Partial Response; SD, Stable Disease; PD, Progressive Disease;


# **LEGEND OF FIGURES**

А

Figure 1. Survival curves according to ITA.LI.CA score quartiles at baseline (A), and at restaging (B).



В



| Classification of patients according to |                | At the time of 1 <sup>st</sup> HCC | At restaging | P Valu |
|-----------------------------------------|----------------|------------------------------------|--------------|--------|
| Scoring System                          | Stages /points | Number (%)                         | Number (%)   |        |
| BCLC CLASSIFICATION                     | 0              | 115 (9.6)                          | 117 (9.8)    | 0.00   |
|                                         | А              | 573 (47.9)                         | 414 (34.6)   |        |
|                                         | В              | 246 (20.6)                         | 110 (9.2)    |        |
|                                         | С              | 254 (21.2)                         | 516 (43.1)   |        |
|                                         | D              | 8 (0.7)                            | 39 (3.3)     |        |
| CLIP SCORE                              | 0              | 406 (33.9)                         | 297 (24.8)   | < 0.00 |
|                                         | 1              | 473(39.5)                          | 454 (38)     |        |
|                                         | 2              | 228 (19.1)                         | 288 (24.1)   |        |
|                                         | 3              | 74 (6.2)                           | 120 (10)     |        |
|                                         | 4              | 14 (1.2)                           | 31 (2.6)     |        |
|                                         | >5             | 1 (0.1)                            | 6 (0.5)      |        |
| HKLC STAGING                            | I              | 560 (46.8)                         | 414 (34.6)   | < 0.00 |
|                                         | II a           | 279 (23.3)                         | 291 (24.3)   |        |
|                                         | II b           | 168 (14.1)                         | 169 (14.1)   |        |
|                                         | III a          | 40 (3.3)                           | 54 (4.5)     |        |
|                                         | III b          | 76 (6.4)                           | 58 (4.9)     |        |
|                                         | IV a           | 29 (2.4)                           | 75 (6.3)     |        |
|                                         | IV b           | 12 (1)                             | 30 (2.5)     |        |
|                                         | V a            | 17 (1.4)                           | 31 (2.6)     |        |
|                                         | V b            | 15 (1.3)                           | 74 (6.2)     |        |
| ITA.LI.CA SCORE                         | 0              | 103 (8.6)                          | 84 (7.0)     | < 0.00 |
|                                         | 1              | 220 (18.4)                         | 157 (13.1)   |        |
|                                         | 2              | 266 (22.2)                         | 188 (15.7)   |        |
|                                         | 3              | 260 (21.7)                         | 204 (17.1)   |        |
|                                         | 4              | 164 (13.7)                         | 189 (15.8)   |        |
|                                         | 5              | 74 (6.2)                           | 139 (11.6)   |        |
|                                         | 6              | 52 (4.4)                           | 80 (6.7)     |        |
|                                         | 7              | 38 (3.2)                           | 63 (5.3)     |        |
|                                         | 8              | 10 (0.8)                           | 34 (2.8)     |        |
|                                         | ≥9             | 9 (0.8)                            | 58 (4.9)     |        |

Supplementary Table 1. Distribution of patients according to stages of different scoring systems.

Abbreviations: ITA.LI.CA, Italian Liver Cancer; HKLC, Hong Kong Liver Cancer; CLIP, Cancer Liver Italian Program; BCLC, Barcelona Clinic Liver Cancer.

| Supplementary Table 2. | The ITA.LI.CA tumor staging. [6] |
|------------------------|----------------------------------|
|------------------------|----------------------------------|

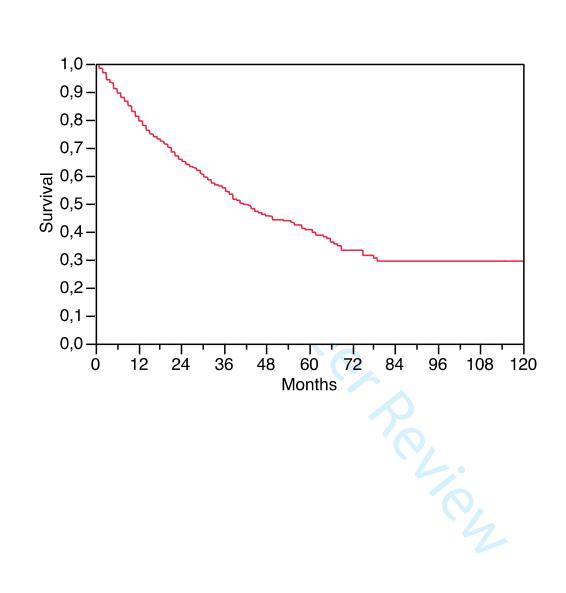
| Stages<br>Variables                       | 0  | ŀ   | A   | В   | 31  | В   | 2   | ]   | B3        | С         |
|-------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----------|-----------|
| Diameter of<br>the largest<br>nodule (cm) | ≤2 | ≤ 3 | 2-5 | 3-5 | > 5 | > 5 | ≤5  | > 5 | Any       | Any       |
| N° nodules                                | 1  | 2-3 | 1   | 2-3 | 1   | 2-3 | > 3 | > 3 | Any       | Any       |
| Vascular<br>invasion or<br>metastases     | no | no  | no  | no  | no  | no  | No  | no  | Intrahep. | Extrahep. |

Abbreviations: ITA.LI.CA, Italian Liver Cancer; Intrahep., intra-hepatic vascular invasion, no metastases; Extrahep., extrahepatic vascular invasion (main portal or caval veins trunk) or metastases.

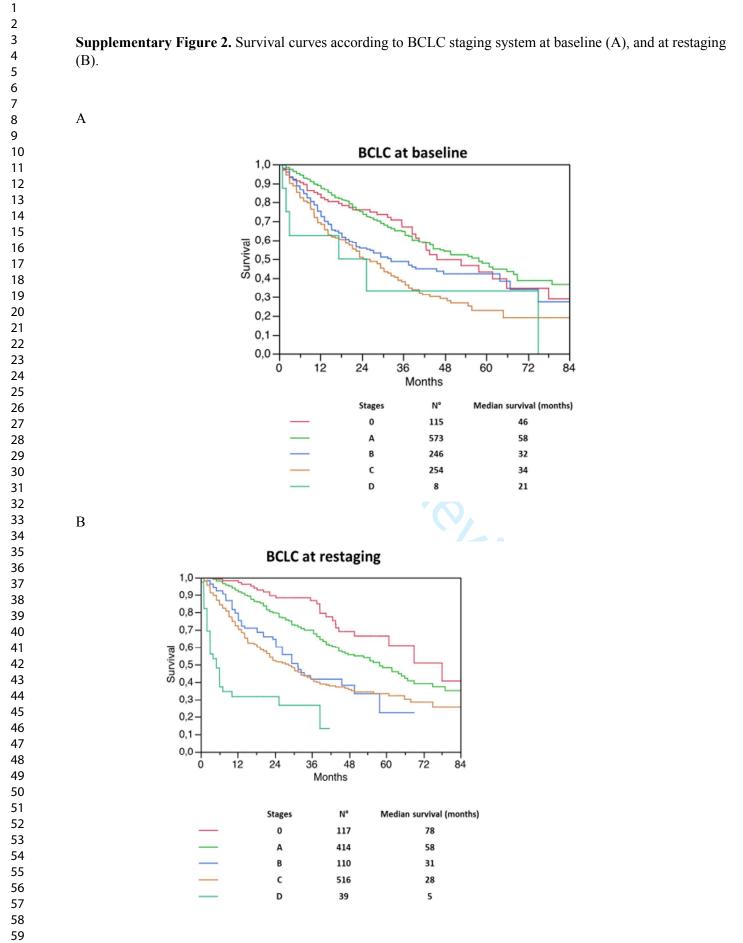
Supplementary Table 3. The ITA.LI.CA prognostic system. [6]

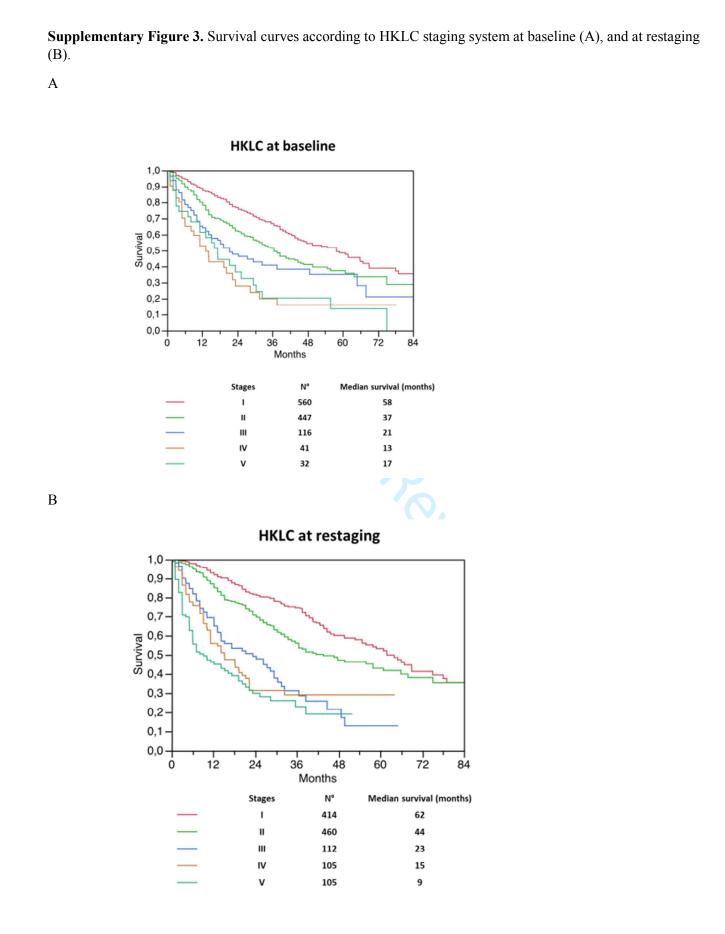
| Variabies                  |         | Points |
|----------------------------|---------|--------|
| ITA.LI.CA Tumor Staging    |         |        |
|                            | 0       | 0      |
|                            | А       | 1      |
|                            | B1      | 2      |
|                            | B2      | 3      |
|                            | В3      | 4      |
|                            | С       | 5      |
| ITA.LI.CA Functional Score |         |        |
| CPS score                  | 5       | 0      |
|                            | 6       | 1      |
|                            | 7       | 1      |
|                            | 8       | 2      |
|                            | 9       | 2      |
|                            | 10-     | 3      |
| ECOG PST                   | 15<br>0 | 0      |
|                            | 1       | 1      |
|                            | 2       | 1      |
|                            | 3-4     | 3      |
| AFP (ng/ml)                |         |        |
|                            | <       | 0      |
|                            | ≤<br>10 |        |
|                            | ><br>10 | 2      |

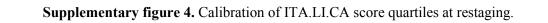
Abbreviations: ITA.LI.CA, Italian Liver Cancer; AFP, alpha-fetoprotein; CPS, Child-Pugh score; ECOG= Eastern Cooperative Oncology Group, PST, performance status

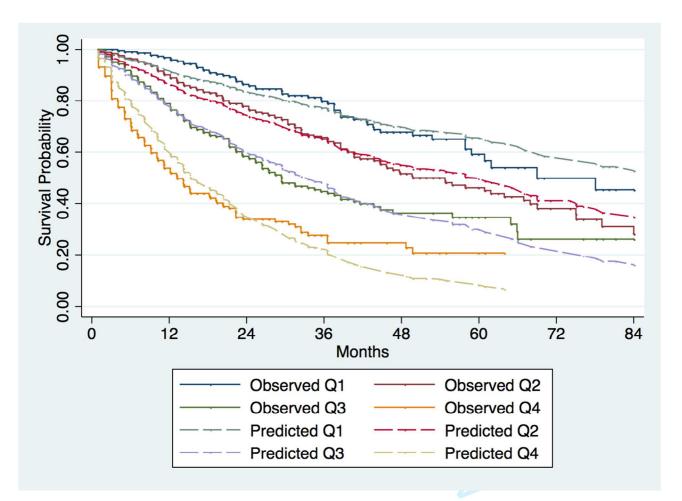

| Variables                |           | HR   | 95% CI      | p Value |
|--------------------------|-----------|------|-------------|---------|
| Age                      | Baseline  | 1.00 | 0.99 - 1.01 | 0.550   |
|                          | Restaging | 1.00 | 0.99 - 1.00 | 0.778   |
| Gender                   | Female    | 0.81 | 0.65 - 1.00 | 0.055   |
| Aetiology                | HCV       | 0.97 | 0.80 - 1.15 | 0.725   |
|                          | HBV       | 1.4  | 0.89 - 1.45 | 0.297   |
|                          | Alcohol   | 0.99 | 0.82 - 1.19 | 0.927   |
| ECOG PS Baseline         | 0         |      |             |         |
|                          | 1         | 1.58 | 1.26 - 1.98 | <0.001  |
|                          | 2         | 1.84 | 1.17 – 2.89 | 0.008   |
|                          | >2        | 2.77 | 1.14 - 6.70 | 0.024   |
| ECOG PS Restaging        | 0         |      |             |         |
|                          | 1         | 1.68 | 1.39 - 2.04 | <0.001  |
|                          | 2         | 3.70 | 2.74 - 4.99 | <0.001  |
|                          | >2        | 4.23 | 2.65 - 6.76 | <0.001  |
| Child Pugh Baseline      | A         |      |             |         |
|                          | В         | 1.42 | 1.16 - 1.74 | 0.001   |
|                          | С         | 2.94 | 1.31 - 6.59 | 0.009   |
| Child Pugh Restaging     | A         |      |             |         |
|                          | В         | 1.74 | 1.44 - 2.11 | <0.001  |
|                          | С         | 4.39 | 2.75 - 6.99 | <0.001  |
| ALBI grade Baseline      | 1         |      |             |         |
|                          | 2         | 1.17 | 0.94 - 1.44 | 0.149   |
|                          | 3         | 1.62 | 1.04 - 2.53 | 0.031   |
| ALBI grade Restaging     | 1         |      |             |         |
|                          | 2         | 1.50 | 1.17- 1.92  | 0.001   |
|                          | 3         | 2.86 | 1.95 - 4.19 | <0.001  |
| MELD                     | Baseline  | 1.06 | 1.03 - 1.09 | <0.001  |
|                          | Restaging | 1.11 | 1.08 - 1.13 | <0.001  |
| Largest diameter (cm)    | Baseline  | 1.11 | 1.07 – 1.14 | <0.001  |
|                          | Restaging | 1,12 | 1.09 - 1.14 | <0.001  |
| Nodular pattern Baseline | Single    |      |             |         |

|                                  | Up to 3 lesions  | 1.18  | 0.95 - 1.46  | 0.131  |
|----------------------------------|------------------|-------|--------------|--------|
|                                  | > 3 lesions      | 1.81  | 1.46 - 2.24  | <0.001 |
| Nodular pattern Restaging        | Single           |       |              |        |
|                                  | Up to 3 lesions  | 1.21  | 0.96 - 1.53  | 0.103  |
|                                  | > 3 lesions      | 2.54  | 2.08 - 3.11  | <0.001 |
| VI Baseline                      | No VI            |       |              |        |
|                                  | Intra hepatic VI | 1.88  | 1.15 - 3.05  | 0.011  |
|                                  | Extra hepatic VI | 2.40  | 1.47 - 3.89  | <0.001 |
| VI Re Staging                    | No VI            |       |              |        |
|                                  | Intra hepatic VI | 2.53  | 1.83 - 3.49  | <0.001 |
|                                  | Extra hepatic VI | 3.10  | 2.24 - 4.28  | <0.001 |
| Metastatic disease               | Baseline         | 4.13  | 2.53 - 6.72  | <0.001 |
|                                  | Restaging        | 3.17  | 2.41 - 4.16  | <0.001 |
| Log e AFP                        | Baseline         | 1.22  | 1.11 – 1.33  | <0.001 |
|                                  | Restaging        | 1.33  | 1.21 - 1.46  | <0.001 |
| Treatment Baseline               | LR               |       |              |        |
|                                  | ABL              | 0.77  | 0.59 - 1.00  | 0.059  |
|                                  | IAT              | 0.99  | 0.77 – 1.27  | 0.947  |
|                                  | SOR              | 2.71  | 1.81 - 4.06  | <0.001 |
|                                  | Other            | 1.58  | 0.92 - 2.70  | 0.091  |
| Response to first treatment      | Late recurrence  |       |              |        |
|                                  | PR               | 1.15  | 0.86 - 1.51  | 0.332  |
|                                  | Early recurrence | 1.22  | 0.93 - 1.61  | 0.134  |
|                                  | SD               | 1.90  | 1.28 - 2.79  | 0.001  |
|                                  | PD               | 3.88  | 2.86 - 5.28  | <0.001 |
| Treatments after Restaging       | LT               |       |              |        |
|                                  | LR               | 1.85  | 0.74 - 4.62  | 0.185  |
|                                  | ABL              | 2.50  | 1.18 - 5.24  | 0.016  |
|                                  | IAT              | 3.30  | 1.60 - 6.76  | 0.001  |
|                                  | SOR              | 7.13  | 3.46 - 14.71 | <0.001 |
|                                  | Other            | 11.31 | 5.33 - 23.99 | <0.001 |
|                                  | BSC              | 10.80 | 5.17 - 22.40 | <0.001 |
| $\Delta$ ITA.LI.CA tumor staging |                  | 1.53  | 1.28 - 1.83  | <0.001 |


| $\Delta$ diameter            | 1.06 | 1.02 – 1.09 | 0.001  |
|------------------------------|------|-------------|--------|
| Δ number                     | 1.05 | 1.02 - 1.08 | <0.001 |
| Δ AFP                        | 1.06 | 0.98 - 1.15 | 0.129  |
| Δ ITA.LI.CA functional score | 1.37 | 1.24 - 1.50 | <0.001 |
| Δ MELD                       | 1.11 | 1.07 – 1.14 | <0.001 |
| Δ ALBI                       | 1.23 | 1.05 - 1.44 | 0.010  |
| CHILD migration *            | 1.81 | 1.39 - 2.36 | <0.001 |
| Follow up > 1 year           | 0.85 | 0.71 - 1.01 | 0.077  |


Abbreviations: HR, hazard ratio; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group Performance Status; MELD, Model for End Stage Liver disease; ALBI= albumin-bilirubin; VI, vascular invasion; AFP, alpha-fetoprotein; LT, liver transplantation; LR, liver resection; IAT, Intra Arterial Treatment; SOR, Sorafenib; BSC, Best Supportive Care; PR, Partial Response; SD, Stable ase; Δ, difference Disease; PD, Progressive Disease;  $\Delta$ , difference between the value of the variable at restaging and that at baseline-


\* from Child A to B or C.




Supplementary Figure 1. Survival Curve after restaging.







