Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma on Cirrhosis: State of the Art and Future Perspectives

Antonio Giorgio*

Infectious Diseases and Interventional Ultrasound Unit, D. Cotugno” Hospital, Naples, Italy

Received: April 7, 2009; Accepted: July 9, 2009; Revised: July 30, 2009

Abstract: Radiofrequency (RF) ablation has gained great popularity in the treatment of Hepatocellular Carcinoma (HCC) on cirrhosis and is replacing Percutaneous Ethanol Injection (PEI) in treating 3cm or less HCC nodules. Its necrotic effect is more predictable than that of PEI and therefore RF can achieve a longer local tumor progression control and survival. In the last four years many data on its efficacy have been added in the literature and long-term results on 3-5-year survival are available. In this review article data of the last 4 years on percutaneous RF ablation of HCC on cirrhosis are discussed in order to give an answer to questions put forward at 2000 EASL Barcelona Consensus Conference. Moreover, new perspectives in the percutaneous treatment of some form of advanced HCC (the so-called percutaneous thrombectomy) are presented together with some patents in the treatment of HCC.

Keywords: Cirrhosis, hepatocellular carcinoma, radiofrequency ablation, percutaneous interventional ultrasound.

INTRODUCTION

Hepatocellular Carcinoma (HCC) is one of the most common forms of cancer and it arises mainly in cirrhotic livers [1-4]. HCC is one of the deadliest cancers worldwide and it accounts for approximately 549,000 cancer deaths each year [5]. The incidence is about 3-4% per year, but screening programs have now allowed the diagnosis at an early stage, when the tumor is eligible for curative treatments [3]. Liver transplantation (LT) is nowadays the standard of care for patients with HCC and underlying liver cirrhosis. However, the number of available livers is still limited and therefore liver resection or percutaneous ablation techniques, such as Percutaneous Ethanol Injection (PEI) or Radiofrequency Thermal Ablation (RF), can be considered for most of the patients. According to the last guidelines of the European Association for the Study of Liver Disease (EASLD), percutaneous ablation techniques have achieved a relatively high rate of complete response in selected patients, similarly to liver transplantation and liver resection, and can be classified as curative/effective treatments [6]. When in 2001 EASL guidelines were defined, PEI was the standard of choice while other ablative techniques, more aggressive and more expensive such as RF or Interstitial Laser Therapy or micro-waves, should be compared to PEI in controlled prospective randomised trials. Since then, RF has gained great popularity in treatment of HCC and is replacing PEI.

The aim of this review article was to present the last data available on percutaneous RF ablation of HCC on cirrhosis with the aim of trying to reply to the questions put forward at the 2000 EASL Barcelona Consensus Conference.

RF DEVICES

Generally, percutaneous ablation is performed under Ultra-sound (US) guidance, which represents the best imaging modality in guiding the insertion of the electrode needle into the tumor, in monitoring the diffusion of energy within it, in controlling the withdrawal of electrode needle and new insertions of electrode into the tumor. Richard et al. discussed in US20080146912 the use of inter-communicator process for simultaneous MRI thermography and radio frequency ablation [7]. Moreover, with the increasing use of Contrast Enhanced Ultrasound (CEUS) [8, 9], guidance and monitoring of RF ablation under CEUS can facilitate the performance of the interventional procedure in evaluating the hyper-vascular portion of the tumor, so to reduce the number of RF sessions.

Percutaneous ablation of HCC can be obtained using monopolar or multipolar energy by inserting one or more electrode needles into the tumor [10] Fig. (1). Heat is generated in the tissue around the needle or between the needles by molecular friction and ionic dissipation [11-13]. The multipolar method can achieve a volume of necrosis approximately more than double that a lesion treated with a simple monopolar needle [14, 15].

There are three types of commercially available RF electrode needle: expandable electrode, internally cooled electrode and saline-enhanced electrode [16] Fig. (2). Up to now there are no reports comparing all three types of electrodes. A recent study by Shibata et al. compared the effectiveness of expandable and internally cooled needles in the treatment of small HCC less than 3cm [17]. The effectiveness was 95% in the internally cooled needle and 93% in the expandable electrodes, while major complications were 0 and 2.8%, respectively. No differences were found between the two electrodes regarding overall survival, local tumor progression and disease-free survival [16]. Our experience with saline-enhanced electrode needles, even if not controlled, is similar to the former results with the two...
other types of electrodes commercially available [17]. Lin et al. compared four RF devices in treating HCC nodules less than 4cm: RF 2000 (maximum power 100W) and RF 3000 (maximum power 200W) with LeVeen expandable electrodes with a maximum dimension of 3.5cm or 4cm internally cooled single electrodes with a thermal dimension of 3cm and a RITA generator with expandable electrodes with a maximum dimension of 5cm [18]. They concluded that complete necrosis and local tumor progression were similar among devices [18]. Hansier et al. treated 38 HCC patients with a multiple saline enhanced electrode needles and showed that effectiveness was comparable with other established ablation techniques [19].

RATES OF NECROSIS

It is clear now that the percentage of induced RF necrosis is strictly depending from size of treated HCC nodules as proved both at imaging evaluation and in explanted liver.

After percutaneous RF ablation, on radiological evaluation (i.e. enhanced CT or MRI) most of authors reported complete necrosis in most of treated lesions < 3cm [10, 17, 20-29]. The percentage of necrosis decreases with the increasing of tumor size. Livraghi et al. treated 114 cirrhotic patients with 126 HCCs larger than 3cm using an expandable cooled electrode: 80 tumors were 3.1-5cm in diameter, and 46 were 5.1-9.5cm in diameter. At imaging, complete necrosis was observed in 60 lesions (47.6%), nearly complete necrosis in 40 tumors (31.7%) and partial necrosis was observed in 26 HCCs (20.6%) [30]. In our experience with saline-perfused electrodes, percutaneous RF ablation achieved 95% complete necrosis in HCC nodules up to 3cm, 83% complete response in HCCs ranging from 3 to 4cm, 47% necrosis in lesions ranging from 4 to 5cm and only 12% in nodules from 5 to 8.5cm 17.

In explanted livers, the rate of necrosis is smaller than the percentage observed on imaging modalities, i.e. enhanced CT or MRI. Mazzafarero et al. found that, in patients who
RF of HCC on Cirrhosis

underwent liver transplantation after RF ablation, complete necrosis was present in 55% of explants (vs 70% of radiological response) [31]. Lu et al. reported complete response after LT in 65% of the tumors < 3cm (vs 85% radiological complete response) [32, 33].

Therefore, other techniques have been added to percutaneous RF in the treatment of large and unresectable HCCs. Rossi et al. reported good results in 62 cirrhotic patients with large and unresectable HCC treated with one or two percutaneous RF sessions after occlusion of the tumor arterial supply [22]. Yamasaki et al. performed RF ablation of 47 large HCC with cooled electrodes combined with hepatic arterial balloon occlusion and found that balloon-occluded RF is superior to standard RF for the treatment of HCC when larger coagulation volumes are required [34].

Sakr and co-workers assessed the short term effect of sequential RF and PEI in the management of HCC nodules larger than 5cm [35]. They adopted a protocol of overlapping RF applications, followed by repeated PEI sessions and concluded that such combined protocol is more effective than RF alone [35]. Recently, Lencioni et al. assessed safety and efficacy of doxorubicin-eluting bead (DEB)-enhanced RF ablation in the treatment of human HCC [36]. Twenty patients with a single HCC nodule ranging in diameter between 3.3 and 7.0cm underwent intra-arterial DEB administration after evidence of residual viable tumor following standard percutaneous RF. These authors concluded that intra-arterial DEB administration is safe and results in a high rate of complete responses in patients with residual tumor activity after standard RF [36]. OzeKi presented in US20060293386 a new method for treating cancer [37]. Noujaim et al. reported some methods in cancer treatment using vascular occlusion in combination with one or more therapies in US20070098724 [38].

LONG TERM SURVIVAL

Because of the absence of randomised controlled trials (RCTs) comparing percutaneous ablation techniques versus no treatment, the primary goal of recent studies was survival.
Table 1. Clinical Studies on Percutaneous RF Ablation on HCC with Cirrhosis

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Journal</th>
<th>Aim of the Study</th>
<th>Needle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rossi et al.</td>
<td>1996</td>
<td>AJR</td>
<td>Small HCC survival</td>
<td>Expandable</td>
</tr>
<tr>
<td>Livraghi et al.</td>
<td>2000</td>
<td>Radiology</td>
<td>Medium-large HCC/efficacy</td>
<td>Cool-tip</td>
</tr>
<tr>
<td>Rossi et al.</td>
<td>2000</td>
<td>Radiology</td>
<td>RF + tumor blood supply occlusion</td>
<td>Expandable</td>
</tr>
<tr>
<td>Goldberg et al.</td>
<td>2000</td>
<td>Cancer</td>
<td>Pathological condition/efficacy</td>
<td>Cool-tip</td>
</tr>
<tr>
<td>Giorgio et al.</td>
<td>2003</td>
<td>AJR</td>
<td>Efficacy</td>
<td>Perfused</td>
</tr>
<tr>
<td>Lencioni et al.</td>
<td>2005</td>
<td>Radiology</td>
<td>Survival expandable needle</td>
<td>Multipolar electrode</td>
</tr>
<tr>
<td>Setor et al.</td>
<td>2008</td>
<td>Radiology</td>
<td>Efficacy/survival</td>
<td></td>
</tr>
</tbody>
</table>

Comparative study

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin et al.</td>
<td>2004</td>
<td>Gastroenterology</td>
</tr>
<tr>
<td>Shiina et al.</td>
<td>2004</td>
<td>Gastroenterology</td>
</tr>
<tr>
<td>Brunello et al.</td>
<td>2008</td>
<td>Scand J Gastroenterol</td>
</tr>
</tbody>
</table>

Meta-analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlando et al.</td>
<td>2009</td>
<td>Am J Gastroenterol</td>
</tr>
<tr>
<td>CHO et al.</td>
<td>2009</td>
<td>Hepatology</td>
</tr>
<tr>
<td>Bunza et al.</td>
<td>2009</td>
<td>BMC Gastroenterol</td>
</tr>
</tbody>
</table>

Table 1 reports the main clinical studies on percutaneous RF ablation of HCC on cirrhosis. The first 5-year cumulative survival curve in the treatment of HCC on cirrhosis using percutaneous RF was reported by Rossi et al. in 1996 [10]. One, 3 and 5-year overall survival rates of 39 treated patients with 54 HCC nodules less than 3 cm were 94%, 61% and 40%, respectively. In 2001 the same group reported a 5-year survival rate of 33% in 88 RF treated cirrhotic patients with an HCC nodule up to 3.5 cm [39].

Lencioni et al. treated with percutaneous RF 187 cirrhotic patients with either a single HCC < 5 cm or maximum three nodules less than 3 cm [40]. This author obtained 97%, 71% and 48% survival rates at 1, 3 and 5-years, respectively. In the experience of Lencioni and co-workers survival was strictly depending by Child’s class of cirrhosis and multiplicity of nodules: in fact, Child A patients with a single HCC nodule had 1, 3 and 5-year survival rates of 100%, 89%, and 61% respectively and the median survival time was 65 months in their series [40].

After the publication of 2001 EASL guidelines, in the last 4 years several authors focused their attention in comparing the different percutaneous ablation techniques used in clinical practice such as RF and PEI (see “comparison with other therapeutic modalities” section below). Hence, following these studies, other results, in terms of survival, are now available.

Lin et al. in a group of 52 cirrhotic patients treated with percutaneous RF reported an overall survival rate of 96%, 84% and 78% at 1, 2 and 3 years, respectively [41].

Shiina et al. reported 74% 4-year survival rate in 232 cirrhotic patients and HCC nodules satisfying Milan’s criteria for liver transplantation [42]. Finally, a recent study by the Italian group of Brunello and co-workers reported 50% 4-year survival rate in 70 HCC patients who underwent percutaneous RF [43].

COMPPLICATIONS

Percutaneous RF ablation has shown to be a safe and effective procedure when performed by experienced operators and following normal established technique [44]. In a multicenter study that enrolled 2,320 patients who underwent percutaneous RF ablation with an internally cooled electrode needle, Livraghi et al. reported 6 deaths (0.3%) [45]; 2.2% major complications were encountered in the study [45]. Deaths were due to multi-organ failure (1 case), haemoperitoneum (3 cases) or liver failure (2 cases). Major complications were haemorrhage, seeding, pyogenic abscess formation and intestinal perforation [45].

Zagoria et al. reported one death for liver abscess formation [46].

Buscarini et al., in a series of 166 patients treated by RF with expandable needle, did not report any death and a rate of 4% major complications were encountered [47].

De Baère et al. reported 1.6% mortality rate and 12% major rate complication rates related to RF application [48].

In our experience, on 338 cirrhotic patients treated with a perfused electrode needle mortality rate was 0.3% and major
RF of HCC on Cirrhosis

Complication rate was 0.6% [49]. One death was due to decompensation of liver cirrhosis in a Child B cirrhotic patient with a single 2cm HCC. Major complications were an abscess formation in one patient with a 3.5cm HCC located in the VI segment and a self-limiting subcutaneous cellulitis [49]. In this series, no cutaneous or abdominal wall seeding was observed [49].

RF of small HCC is a safe procedure even in high-risk locations [50-52]. Major complications that can be encountered more frequently are haemoperitoneum or abscess formation; this last complication can be encountered after ablation sessions of HCC nodules located in the VI segment: heat can reach the bowel wall and can determine perforation of the large bowel so that intestinal germs can reach the liver and can induce abscess formation [49]. Such abscess can be managed percutaneously [49, 53].

Acute cholecystitis following percutaneous RF ablation due to heat injury to gallbladder wall has also been reported [54] as well as some cases of haemobilia: therefore, some authors suggest not to treat HCC nodules close to gallbladder. But the experience of Chopra and co-workers [55] and our interventional routine experience (unpublished data) clearly show that tumors adjacent to the gallbladder is feasible and appears safe to be treated as described above.

COMPARISON WITH OTHER THERAPEUTIC MODALITIES

After the Consensus Conference of Barcelona in June 2000, the 2001 published EASL guidelines stated that, in properly selected patients with HCC, percutaneous ablation achieves a relatively high rate of complete response, similar to that of liver transplantation or hepatic resection [6]. According to 2001 EASL guidelines, PEI was the standard percutaneous technique and “thus more expensive and invasive options, such as RF, cryotherapy or laser, should be compared with PEI in controlled randomised trials assessing not only tumor response, but also long-term survival and costs” [6]. From 2004 several randomised controlled trials have been published comparing PEI and RF in the treatment of small HCC. Two of these prospective trials have some biases because of selection of patients or because of the short term survival time reported (only two years) [56, 57]. Therefore, only three full-length published RCTs, comparing PEI and RF in the treatment of HCC on cirrhosis, were considered for recent meta-analysis studies assessing 3-year survival.

Lin et al. compared PEI and RF in treatment of HCC < 4cm. One hundred and fifty seven patients with 186 HCC 4cm or less were randomly assigned to three groups: 52 in the conventional PEI, 53 in the higher dose PEI and 52 in RF ablation [41]. Complete tumor necrosis was 85%, 92% and 96% in the conventional PEI group, higher-dose PEI group and RF ablation group, respectively. Overall survival rate was highest in the RF group vs the conventional group, $p = 0.14$, vs the higher dose group, $p = 0.023$. In particular, at 1, 2 and 3 years the overall survival rate was 96%, 84% and 78%, respectively [41]. Local tumor progression was lowest in the RF group (vs the conventional PEI, $p = 0.012$; vs the higher - dose group, $p = 0.037$). Cancer free survival rate was highest in the RF group (vs the conventional PEI group, $p = 0.19$; vs the higher - dose PEI, $p = 0.024$). The Authors concluded that RF ablation yielded better clinical outcomes than conventional PEI and higher-dose in treating HCC 4cm or less [41].

Shiina et al. prospectively randomised 232 patients with HCC (3 or fewer lesions) each 3cm or less to receive PEI and RF. Four-year survival rate was 74% in RF patients and 57 in PEI treated patient [42].

RF had a 46% smaller risk of death, a 43% smaller risk of overall recurrence and a 88% smaller risk of local tumor progression than PEI. Adverse events were not different between the two groups. Shiina and co-workers concluded that, judging from higher survival but similar adverse events, RF is superior to PEI for small HCC.

The most recent work was published by the Italian group of Brunello and co-workers [43]. One hundred and thirty nine cirrhotic child A or B patients were prospectively randomised to percutaneous treatment with RF or PEI: they have 177 nodules 15-30mm, 1 or 3 nodules. The primary endpoint was the complete response one year after ablation; the secondary endpoint was early complete response, complications rate and survival. Complete response was 65.7% for RF patients and 36% for PEI group. Complications were observed in 10 patients in the PEI group and in 12 patients in the RF group. Four year survival was identical in the two groups without any significant statistical difference [43].

Regarding the comparison with surgery, two interesting works have been recently published. Chen and colleagues reported the results of a prospective randomised trial comparing RF and partial hepatectomy for small HCC [58]. One hundred and eighty cirrhotic patients were randomly assigned to RF or surgery. The 1, 2, 3 and 4-year survival rates after RF and surgery were 95.8%, 82.1%, 71.4%, 67.9% and 93.3%, 82.3%, 73.4%, 64.0%, respectively [58].

The corresponding disease-free survival rates were 85.9%, 69.3%, 64.1%, 46.4% and 86.6%, 76.8%, 69%, 51.6%, respectively [58]. Statistically, there was no difference between the two treatments. The Author’s conclusion is that percutaneous RF was as effective as surgical resection in the treatment of solitary and small HCC; moreover percutaneous RF has the advantage over surgical resection in being less invasive [58].

This concept has been stressed again in the very recent report by Livraghi and co-workers appeared in Hepatology one year ago [59]. The Livraghi’s work replies to the ancient question if surgery is better than percutaneous ablation in the treatment of small HCC. The term small HCC is now characterized as an HCC nodule less or equal to 2cm in diameter [59]. In this study 218 cirrhotic patients with a single HCC 2cm or less underwent RF. Two primary endpoints that could be easily compared with those reported for resective surgery were evaluated: 1) the rate of sustained, local complete response and 2) the rate of treatment related complications. The secondary endpoint was 5-year survival in the 100 patients whose tumors had been considered potentially operable. Peri-operative mortality, major complications and 5-year survival rates were 0%, 1.8% and 68%, respectively. The Authors concluded that, compared with resection, RF is less invasive, with lower complication.
rate and similar local control and survival [59]; more-over, in the opinion of Livraghi and colleagues, these data indicate that RF can be considered the treatment of choice for patients with single HCC 2cm or less, even when surgical resection is possible [59].

After these reports, three recent meta-analyses of controlled randomised trials have been published comparing RF and PEI in the treatment of HCC on cirrhosis [60, 61].

In the meta-analysis of Orlando et al. [60] RF ablation was superior to PEI in the treatment of small HCC with respect to overall survival, 1, 2, and 3 years survival rates, 1, 2, and 3 cancer-free survival rates, and tumor response.

In the meta-analysis of Cho et al. [61] RF ablation significantly improved 3-year survival status for patients with HCC > 2cm; when compared to PEI, however, the Authors conclude that large scale RCTs are needed for assess the overall survival of patients with lesions < 2cm [61].

Finally the same conclusions were recently reported by Bouza et al. who analysed the efficacy and safety of RF versus PEI in treating non surgical HCC [62].

CURRENT & FUTURE DEVELOPMENTS

The data presented so far clearly indicate that RF is a valid alternative to surgery for HCC nodules up to 3cm or less, so that, in the opinion of some authors, it should be considered the first line therapy for single early 2 m HCCs, in patients with compensated liver disease, even if, in our opinion, it should be added “in patients unsuitable for LT”.

Moreover, a large amount of data support the idea that percutaneous RF is safe and effective also in tumors up to 4 cm in diameter. According to the 2005 guidelines of AASLD, PEI and RF are equally effective for HCC < or equal to 2m [63]. The necrotic effect of RF is more predictable in all tumor sizes and its efficacy is clearly superior to PEI in larger tumors [34].

Nevertheless, patients with portal system invasion are always excluded from percutaneous RF ablation. HCC is a tumor with great tendency to invade portal system and portal vessels invasion is still found in 12-70% of cases [64-67]. Prognosis of patients with HCC extended in the portal vein is very poor and a median survival time of 2.7-4.0 months in untreated patients has been reported [68, 69]. There is only a report by Seror and colleagues which deals with HCC and represented the control group (Group 2). RF ablation was unsuccessful. Cumulative survival rate was 77%, 77%, and 77% at 1, 2 and 3 years in RF treated patients (Group 1) and 43% and 0% at 6 and 12 months in untreated patients (Group 2) respectively, with a statistical significant difference (log- rank test: p < 0.0001).

Only few minor complications were observed [71-73].

These data showed that RF can destroy both the HCC intra-parenchymal nodule and the accompanied neoplastic thrombus in the MPT with high efficacy and low rate of complications.

How can these results be explained?

In our opinion the main factor was the selection of only patients with a single up to 5cm HCC nodule and with well compensated liver disease.

Nevertheless, these preliminary results need further confirmation, either by us and others, in a larger series of patients and a longer time of observation, so to control that they can be maintained over time (5 years). Obviously, this procedure must be per-formed by an experienced operator in interventional ultrasounds.

ACKNOWLEDGEMENTS

Author thanks Dr. Antonella Di Sarno, M.D., for her support in the preparation of the manuscript.

CONFLICT OF INTEREST

None.

REFERENCES

Radiofrequency ablation of hepatocellular carcinoma: Recent advances and future perspectives.

Recent Patents on Anti-Cancer Drug Discovery, 2010, Vol. 5, No. 1

